六路互感器伏安特性測試儀術語定義
六路互感器伏安特性測試儀術語定義1.設計用途
設計用于對保護類、計量類CT/PT進行自動測試,適用于實驗室也適用于現場檢測。
2.參考標準
GB 1207-2006、GB 1208-2006
六路互感器伏安特性測試儀術語定義3.主要特征
• 支持檢測CT和PT
• *大電流1000A5V,無需外接其它輔助設備,單機即可完成所有檢測項目.
• 自帶微型快速打印機、可直接現場打印測試結果.
• *大電壓3000V,*大功率可達6KVA。
• CT變比二次側同時測試6組.
• 按規程自動給出CT/PT(勵磁)拐點值.
• 自動給出5%和10%誤差曲線.
• 可測試變壓器套管CT和GIS內CT.
• 可保存1000組測試資料,掉電后不丟失.
• 支持U盤轉存資料,可以通過標準的PC進行讀取,并生成WORD報告.
• 小巧輕便≤35Kg,非常利于現場測試.
• 開機自檢,電流、電壓多重保護.
六路互感器伏安特性測試儀術語定義4.測試儀主要測試功能:(見下表)
CT(保護類、計量類) | PT |
• 伏安特性(勵磁特性)曲線 | • 伏安特性(勵磁特性)曲線 |
• 自動給出拐點值 | • 自動給出拐點值(有些PT無拐點) |
• 自動給出5%和10%的誤差曲線 | • 變比測量 |
• 支持六組變比同時測量 | • 極性判斷 |
• 極性判斷 | • 交流耐壓測試 |
• 一次通流測試 | • 二次負荷測試 |
• 交流耐壓測試 | • 二次繞組測試 |
• 二次負荷測試 |
|
•二次繞組測試 |
|
•自動判斷CT是否合格 |
|
• 支持電壓法測試CT變比,支持變壓器套管CT或GIS內CT變比測試 |
|
六路互感器伏安特性測試儀術語定義5. 測試儀主要技術參數: (見下表)
項 目 | 參 數 | |
工作電源 | AC220V±10% 、50Hz | |
設備輸出 | 0~3000V,(電流*大設置20A)(0.2%*讀數+0.3%*量程) | |
大電流輸出 | 0~1000A(5V) | |
二次繞組 電阻測量 | 范圍 | 0.1~300Ω |
精度 | (0.2%*讀數+0.3%*量程)分辨力1mΩ | |
二次實際 負荷測量 | 范圍 | 5~500VA |
精度 | 1%±0.1VA | |
CT 變比測量 | 范圍 | ≤25000A/5A(5000A/1A) |
精度 | ±0.5% | |
PT 變比測量 | 范圍 | 6KV--500KV |
精度 | ±0.5% | |
工作環境 | 溫度:-10℃~ 40℃,濕度:≤90%,海拔高度:≤1000m | |
尺寸、重量 | 尺寸:410mm ×250mm×300mm, 重量:≤35Kg |
5.1.工作條件要求
六路互感器伏安特性測試儀術語定義6. 產品硬件結構
1.面板結構: (圖1)
2.面板注釋:
1 —— 設備接地端子
2 —— U盤轉存接口
3 —— 打印機
4 —— 液晶顯示器
5 —— 控制器
6 ——功率開關
7 —— 電流法CT變比/極性試驗時,大電流輸出端口
8 —— 電流法CT變比/極性試驗時,二次側接入端口,共6組
9 —— CT變比電壓法測試輸入端口,接CT一次。
10 ——CT/PT伏安特性試驗時電壓輸出端口;CT/PT負荷試驗端口;PT變比/極性時,一次側接入端口;CT變比電壓法測試輸出端口,接CT二次。
11 ——PT變比/極性時,二次側接入端口
12 ——擴展端子(選配)
13 ——主機開關
14 ——主機電源插座
七.操作方式及主界面介紹
7.1、控制器使用方法
控制器有三種操作狀態:“左轉”,“右轉”,“按下”。使用控制器的這三種操作可以方便的用來移動光標、輸入數據和選定項目等。
7.2、主菜單 (見圖2)
開機之后默認進入CT測試,CT測試主菜單共有“勵磁”、“負荷”、“直阻”、“變比極性”、“交流耐壓”、“一次通流” 、“數據查詢”、“PT”8種選項,可以使用旋轉控制器進行選擇和設置。如圖2所示,當“類型”后面為帶有灰色背景的 CT 時,表示當前為CT測試。旋轉光標到“PT”并按下,則進入PT測試界面,如圖3。
PT測試主菜單共有“勵磁”、“負荷”、“直阻”、“變比極性”、“交流耐壓”、“數據查詢” 、“CT”7種選項,可以使用旋轉控制器進行選擇和設置。如圖3所示,當“類型”后面為帶有灰色背景的 PT 時表示當前為PT測試。旋轉光標到“CT”并按下,則進入CT測試界面,如圖2。
八.CT測試
進行電流互感器測試時,請移動光標至CT,并選擇相應測試選項。
CT勵磁(伏安)特性測試
在CT主界面中,選擇“勵磁” 選項后,即進入測試界面如圖4。
(1)、參數設置:
勵磁電流:設置范圍(0—20A)為儀器輸出的*高設置電流,如果實驗中電流達到設定值,將會自動停止升流,以免損壞設備。通常電流設置值大于等于1A,就可以測試到拐點值。
勵磁電壓:設置范圍(0—3000V)為儀器輸出的*高設置電壓,通常電壓設置值稍大于拐點電壓,這樣可以使曲線顯示的比例更加協調,電壓設置過高,曲線貼近Y軸,電壓設置過低,曲線貼近X軸。如果實驗中電壓達到設定值,將會自動停止升壓,以免損壞設備。
(2)、試驗:
接線圖見(圖5),測試儀的K1、K2為電壓輸出端,試驗時將K1、K2分別接互感器的S1、S2(互感器的所有端子的連線都應斷開)。檢查接線無誤后,合上功率開關,選擇“開始”選項,即開始測試。
試驗時,光標在“停止”選項上,并不停閃爍,測試儀開始自動升壓、升流,當測試儀檢測完畢后,試驗結束并描繪出伏安特性曲線圖(如圖6)。
注意:圖4中“校準”功能:主要用于查看設備輸出電壓電流值,不用于互感器功能測試,詳情見附錄一。
圖8 ,誤差曲線參數設置界面 圖9,誤差曲線圖
2)、伏安特性(勵磁)測試結果操作說明
試驗結束后,屏幕顯示出伏安特性測試曲線(見圖6)。該界面上各操作功能如下:
打 印:控制器選擇“打印”后,先后打印伏安特性(勵磁)曲線、數據,方便用戶做報告用。同時減少更換打印紙的頻率,節省時間,提高效率。 勵磁數據:將光標移動至“勵磁數據”選項選定,屏幕上將顯示伏安特性試驗的測試數據列表(見圖7)。按下“退出”鍵即退回到伏安特性試驗曲線界面,控制器即可實現數據的上下翻。當頁面翻轉不動時,則已到達*后一頁。
保 存:控制器移動至“保存”選項,按下即可將當前所測數據保存,保存成功后,屏幕上顯示“保存完畢”。成功保存后,用戶如果再按下“保存”鍵,程序會自動分辨,不保存相同的測試記錄。并且可在數據查詢菜單中進行查看。
誤差曲線:在圖6的界面中,將光標移至“誤差曲線”選定后,屏上將顯示伏安特性試驗的誤差曲線的設置(見圖8)。選定后計算出的誤差曲線如圖9。
打印設定:光標移動至此選項,按下即進入打印設置界面(圖10),可根據要求選擇“默認”(程序按照一定步進打印大量電壓電流值),或選擇“自設定”(程序會按照表格中的10個電流值進行打印)。
以下四項為誤差曲線計算時的設置項:
額定負荷 :CT二次側額定負荷。
額定二次 :CT的二次側額定電流
ALF :準確限值系數,如:被測CT銘牌為“5P10”,“10”即為限制系數。
5% :自動計算出5%誤差曲線數據并顯示誤差曲線。
10% :自動計算出10%誤差曲線數據并顯示誤差曲線。
誤差曲線界面中有三個選項:
打印 :可打印出誤差曲線圖及數據;
數據 :可顯示出誤差曲線相關數據,查看方式同伏安特性數據。
退出 :可返回上一層菜單。
3、CT變比極性試驗(安裝在變壓器或者開關裝置內部的套管CT,建議使用電壓法)
在CT主界面中,選擇“變比極性”后,出現“電流”和“電壓”選項(圖12),選擇電流即用電流法測試,選擇“電壓”即用電壓法測試。
3.1、電流法變比極性測試
1參數設置:
在CT“變比極性”界面中,選擇“電流”或“電壓”后,進入測試界面見圖13,設置一次電流: 0 ~1000A,測試儀P1、P2端子輸出的*大電流;
二次側額定電流: 1A或5A。
2試驗: 接線圖見圖14,CT一次側接P1、P2,CT二次側接對應的1S1、1S2-6S1、6S2,不檢測的二次繞組要短接,設置二次側額定電流及編號后,合上功率開關,選擇“開始”選項,按下控制器,試驗即開始。
試驗過程中光標在“開始”選項上不停閃爍,直至試驗完畢退出自動測試界面,或按下控制器人為中止試驗,裝置測試完畢后會自動停止試驗,試驗完成后,即顯示變比極性測試結果。可以選擇 “保存” 、“打印”及“退出”選項進行下一步操作。
儀器本身的同色端子為同相端,即P1接CT的P1,S1接CT的S1時,極性的測試結果為減極性。
3.2、電壓法變比極性測試
1)參數設置:
在CT“變比極性”界面中,選擇“電壓”后,進入界面,只需設置二次電流:1A或5A(參考圖13)。
2)測試:
參照圖15進行接線,被測CT一次側接測試儀小端子L1、L2,CT二次側接K1、K2,設置二次側額定電流及編號后,合上功率開關,選擇“開始”選項,按下控制器,測試即開始。
測試過程中光標在“開始”選項上不停閃爍,直至測試完畢退出自動測試界面,或按下控制器人為中止測試,裝置測試完畢后會自動停止測試,測試完成后,即顯示變比極性測試結果。可以選擇 “保存” 、“打印”及“返回”選項進行下一步操作。
儀器本身的同色端子為同相端,即L1接CT的P1,S1接CT的K1時,極性的測試結果為減極性。
5、CT一次通流試驗
1)參數設置:
在CT主界面中,選擇“一次通流”后,進入測試界面(圖18),
設置好設定電流值:0~600A。
2)試驗:
接線圖見圖19,CT一次側接P1、P2,CT二次側接二次負載。設置好通流電流后,合上功率開關,旋轉控制器將光標移動至“開始”選項,按下控制器,試驗即開始,電流保持時間以進度條顯示(0~200A:保持10分鐘;大于200A~300A:保持2分鐘;大于300A:保持3秒鐘)。
CT交流耐壓試驗
1)參數設置:
在CT主界面中,選擇“交流耐壓”后,進入測試界面(圖20),
設置好設定電壓值:0~3000V。
2)實驗:
接線圖見圖21,被測CT二次側短接與測試儀電壓輸出口K2連接,電壓輸出口另一端K1連接互感器外殼。檢查接線完成后,合上功率開關,選擇 “開始”選項,按下即開始升壓,電壓保持時間默認為1分鐘,測試過程中,儀器內部對互感器二次繞組與外殼之間的漏電流實時檢測,如果發現電流迅速增加,將會自動回零,頁面會顯示“不合格”。
7、CT負荷試驗
參數設置:
在CT測試主界面中,選擇進入“負荷”試驗界面(如圖22),
設置二次側額定電流: 1A或5A。
線電阻:只在測試負載箱時使用(按照負載箱銘牌設定)
試驗:測試儀的K1、K2為電壓輸出端,參照圖23進行接線,將被測負荷(負載)接測試儀的K1、K2端,檢查接線無誤后,選擇“開始”即開始試驗,試驗完成后,即顯示負荷性測試結果,可以選擇 “保存” 、“打印”及“退出”選項進行下一步操作。
8、直阻測試:
1)、校零:
在CT測試主界面中,選擇進入“直阻”試驗界面(如圖24),試驗前應先對測試用導線進行校零,在CT主界面顯示菜單上通過控制器選中 直阻測試項,進入直阻測試界面并選擇“校零”, 校零前將測試導線的線夾對接(測試線短接)(圖25),然后進行校零,校零完成后,界面提示“校零完畢”。
2)、試驗:
校零結束后,參照圖26接好測試線,測試儀的D1、D2接被測繞組,選中 “開始” 鍵即開始測試,試驗完成后,即顯示直阻測試結果,可以選擇 “保存” 、“打印”及“退出”選項進行下一步操作。
9.PT測試
圖26,直阻測試接線圖
進行電壓互感器功能測試時,請移動光標至PT,并選擇相應測試選項。
1、PT勵磁特性測試
1)、參數設置
在PT測試主界面中,選擇進入“勵磁”試驗界面(如圖27),
勵磁電流(0~20A):輸出電流為儀器輸出的*高設置電流,如果試驗中電流達到設定值,將會自動停止升流。通常1A即可測試出拐點值。
勵磁電壓:100V、100/√3、100/3、150V、220V、350V。
2)、試驗:
參照圖28接線,測試儀的為電壓輸出端,試驗時將K1、K2分別接互感器的a、x ,電壓互感器的一次繞組的零位端接地。檢查接線無誤后,合上功率開關,選項“開始” 選項后,即開始測試。
試驗時,光標在“開始”選項上,并不停閃爍,測試儀開始自動升壓、升流,當測試儀檢測完畢后,試驗結束并描繪出伏安特性曲線圖。
3)、PT(勵磁)測試結果操作說明
請參考8頁CT測試結果說明
3、PT變比極性試驗
1)參數設置:測試界面見圖30。
一次:0~3000V。
二次:100V、100/√3、100/3、150V、220V。
2)開始試驗:
參照圖31進行接線,PT一次側接A、X,PT二次側接a、x。設置二次側額定電壓及編號后,合上功率開關,選擇 “開始”選項,按下控制器,試驗即開始。
試驗過程中光標在“開始”選項上不停閃爍,直至試驗完畢退出測試界面,或按下控制器人為中止試驗,試驗完成后,即顯示變比極性測試結果。可以選擇 “保存” 、“打印”及“退出”選項進行下一步操作。
儀器本身的同色端子為同相端,即A接PT的A,X接PT的X時,極性的測試結果為減極性。
5、PT交流耐壓試驗
1)、參數設置:
在PT測試主界面中,選擇進入“交流耐壓”試驗界面(如圖34),
設置好設定電壓值:0~3000V。
2)、實驗:
參照圖35接線,被測PT二次側短接與測試儀電壓輸出口K2連接,電壓輸出口另一端K1連接互感器外殼。檢查接線完成后,合上功率開關,選擇 “開始”選項,按下即開始升壓,電壓保持時間默認為1分鐘,測試過程中,儀器內部對互感器二次繞組與外殼之間的漏電流實時檢測,如果發現電流迅速增加,將會自動回零,頁面會顯示測試不合格。
6、PT負荷試驗
1)、參數設置:
在PT測試主界面中,選擇進入“負荷”試驗界面(如圖36),
設置額定二次電壓值:100V、100/√3、100/3、150V、220V。
2)、試驗:
測試儀的K1、K2為電壓輸出端,參照圖37進行接線,將被測負荷(負載)接測試儀的K1、K2端,檢查接線無誤后,合上功率開關,選擇“開始”即開始試驗,試驗完成后,即顯示負荷性測試結果,可以選擇 “保存” 、“打印”及“退出”選項進行下一步操作。
7、直阻測試:
請參照第14頁CT直阻測試。
十.數據查詢
在CT/PT測試主界面中,選擇進入“數據查詢”試驗界面(如圖38),根據需要選擇“勵磁”、“負荷”、“直阻”、“變比極性”、“角差比差”、“退出”等測試選項,選定測試項目后,進入圖39界面,顯示儀器中該項目下所保存的*新的測試結果,可以選擇 “上頁” 、“下頁”、“轉存”、“退出”、“清理”選項進行相應操作。
轉存時,插上U盤至測試儀通訊口“USB”,在圖39中,點擊“轉存”則會將當前頁面下所顯示的測試記錄轉存進入U盤之中。每條記錄所用時間約2秒鐘,轉存結束后,界面提示“轉存完畢”。
十一.PC 機操作軟件使用說明
解壓“軟件”至C盤根目錄。
11.2首先,安裝“wic_x86_chs.exe”文件,其次,安裝“dotNetFx40_Full_x86_x64.exe”軟件,默認安裝地址即可。
11.3安裝完畢后,打開“伏安特性”文件夾,選擇打開“VATeXing.exe”操作軟件,如圖40即為上位機操作軟件。
11.4在“VATeXing.exe”操作軟件中,下方選擇互感器種類“CT”或“PT”,應用語言“中文”或“英文”。
11.5如需生成報告格式文件,必須載入試驗結果數據,具體操作方法如下:
a)、將存儲試驗數據的U盤連接至計算機。
b)、在圖40中選擇打開“選擇文件”,出現圖41操作窗口,在圖41中可根據需要載入所需文件。
c)、試驗結果數據說明:以“A”為開頭的數據為勵磁特性結果數據,以“B”為開頭的數據為變比極性結果數據,以“C”為開頭的數據為負荷結果數據,以“D”為開頭的數據為直阻結果數據。以“E”為開頭的數據為角差比差結果數據,以“T”為開頭的數據為暫態結果數據。
11.6 載入數據結束后,選擇“確定”出現圖42界面,在此界面右上方設置相應參數后,選擇“生成誤差曲線”則完成所有試驗結果的載入。
11.7 載入全部完成后,可根據需要選擇“保存”或打印結果數據。
11.8 選擇“保存”選項,則以WORD的形式顯示結果如圖43。
11.9 如需繼續加載試驗結果數據,請先清理上次載入的數據。
圖40
圖41
圖42
附 錄
附錄一、 “校準”測試方法(以CT為例)
圖46,電流校準接線圖
1)參數設置:
進入CT“勵磁”測試界面后,選擇進入“校準”試驗界面(如圖44),設定好勵磁電流值:0.1A ~ 5A;勵磁電壓值:1V~3000V。
2)開始:
電壓校準試驗參照圖45進行接線;設置好被測電壓后,合上功率開關,選擇 “開始”選項,按下控制器,試驗即開始,試驗到達設定值后將保持輸出電壓/電流值用于檢測,檢測完畢后,按下控制器,試驗返回圖44界面。
電流校準試驗參照圖46進行接線,電壓設定值略高于【電流設定值(A)*負載(Ω)】,設置好被測電流/電壓值后,合上功率開關,選擇 “開始”選項,按下控制器,試驗即開始,試驗到達設定值后將保持輸出電流/電壓值用于檢測,檢測完畢后,按下控制器,試驗返回圖44界面。
附錄二、售后服務承諾 ,本產品保修一年,終身維護。
附錄三、誤差曲線說明
根據互感器二次側的勵磁電流和電壓計算出的電流倍數(M)與允許二次負荷(ZII)之間的5%、10%誤差曲線的數據中也可判斷互感器保護繞組是否合格:
1)在接近理論電流倍數下所測量的實際負荷大于互感器銘牌上理論負荷值,說明該互感器合格如圖45數據說明;
2)在接近理論負荷下所測量的實際電流倍數大于互感器銘牌上的理論電流倍數,也說明該互感器合格如圖45數據說明
保護用電流互感器二次負荷應滿足5%誤差曲線的要求,只要電流互感器二次實際負荷小于5%誤差曲線允許的負荷,在額定電流倍數下,合格的電流互感器的測量誤差即在5%以內。二次負荷越大,電流互感器鐵心就越容易飽和,所允許的電流倍數就越小。因此,5%誤差曲線即n/ZL曲線為圖9所示曲線。在圖45中例所示(所測保護用CT為5P10 20VA):其中5為準確級(誤差極限為5%),P為互感器形式(保護級),10為準確限值系數(10倍的額定電流),20VA表示額定二次負荷(容量)。電流倍數為10.27倍(接近10倍)時,所允許的二次負荷為27.19Ω,大于該CT的額定負荷20VA(20VA/1=20Ω),通過該數據可判斷該互感器合格。另外,在二次負荷為19.58Ω(接近20Ω) 所允許的二次負荷為27.19Ω,大于該CT的額定負荷20VA(20VA/1=20Ω),通過該數據可判斷該互感器合格。另外,在二次負荷為19.58Ω(接近20Ω)時,所允許的電流倍數為12.85倍,大于該CT的額定電流倍數(10倍),通過該數據也可判斷該互感器合格。其實,只要找出這兩個關鍵點中的任意一個,即可判斷所測互感器是否合格。
如果10%誤差不符合要求一般的做法有:
增大二次電纜界面積(減少二次阻抗)
串接同型同變比電流互感器(減少互感器勵磁電流)
改用伏安特性較高的繞組(勵磁阻抗增大)
提高電流互感器變比(增大勵磁阻抗)
誤差曲線計算公式:
M =(I*P)/N ZII =(U-(I*Z2))/(K*I)
I 電流 U 電壓
N=1 (1A額定電流) I 電流
N=5 (5A額定電流) Z2 CT二次側阻抗
P=20 (5%誤差曲線 ) K=19(5%誤差曲線.1A 5A額定電流)
P=10 (10%誤差曲線 ) K=9 (10%誤差曲線.1A 5A額定電流)
附錄四、時間設置說明
開機前先按下旋轉控制器不要松開,打開電源,當進度條進完后停3秒之后,松開旋轉控制器,此時可看到如圖48的界面,此時旋轉“控制器”把前兩個99設置為01,按下“控制器”。光標移動到后兩位的99,再次旋轉“控制器”,把后兩位也設置為01,按下“控制器”。此時可進入到界面49,在此界面中可設置時間,設置方式是先按下控制器,再旋轉設置數字,設置完畢后再次按下控制器表示確認,光標會進入到下個選項。
附錄五、智能提示說明
在做各種測試時,新上手的用戶可能會對接線及操作不熟練,導致實驗數據出現錯誤的結果。在這種情況下,會讓您無所適從,基于此我們加上了一些簡單的智能提示,使新用戶更易上手,使老用戶減少誤操作。
如圖50到圖53,舉例說明了伏安特性與變比極性測試時易出現的一些問題。
伏安特性測試時空開(功率開關)忘記打開的提示。
伏安特性測試時接線錯誤的提示。(CT的二次繞組應接在K1/K2,有時用戶會誤接在S1/S2)。
變比極性測試時空開忘記打開或者一次電流線沒有接上。
變比極性測試時CT二次的接線沒有接對。
?
日常生活中,我們能通過電視、網絡及時了解世界各地的訊息,這是數學方法用于信息的壓縮、傳遞和解碼;我們點開手機,購物平臺根據不同特點,顯示出“千人千面”的推送,背后有著復雜的數學模型;我們經常發現,購買的東西并不是直線抵達所在的城市,這是數學分支中運籌學在生活中的運用……此外,城市建設與社會發展中也存在許多數學問題,比如氣象預測、污染防治、交通規劃。
“這些都是數學與不同專業的交叉融合,展現出這門基礎科學逐漸從幕后走向臺前、不斷影響和改變我們生活的過程。”秦厚榮介紹,這體現了數學為其他學科提供理論支撐、為各種行業提供研究方法、為多元領域給予應用手段。
數學是自然科學皇冠上的明珠,也是重大技術創新的基礎。2019年,四部門聯合制定《關于加強數學科學研究工作方案》,提出建設應用數學中心的指導意見,搭建數學科學與數學應用領域的交流平臺,聚焦、提出、凝練和解決一批國家重大科技任務、重大工程、區域及企業發展重大需求中的數學問題,成為航空航天、國防安全、生物醫藥等領域的重要支撐。
在秦厚榮看來,江蘇國家應用數學中心的建立宗旨,也在于立足和服務地方經濟發展和社會創新。江蘇的工業總產值約占全國的1/8。制造業總量雖然規模大,但面臨發展不均衡的問題。如何順應新一輪科技革命和產業變革、加快實現高質量發展?以工業制造業為例,轉型升級不僅依賴于新材料新技術的運用,工業大數據的核心更在于基于數學建模算法的創新應用。
隨著數學在高新科技、重大工程、公共安全特別是人工智能等領域扮演越來越重要的角色,人們對其的認知、了解和重視程度也在逐漸改變和加深。“數學學科本身也將在不斷解決新問題、新挑戰中,在不同行業、不同領域的實際應用和檢驗中,迎來向更寬廣、更縱深發展的契機。”
*13個應用數學“國家隊”的研究方向各有側重,但核心目標都是服務于國家重大戰略需求、面向解決制約產業發展的瓶頸問題,促進重大技術創新。
江蘇應用數學中心所聚焦側重的智能算法,是數據科學與新型算法結合的產物,該領域的研究涉及微分方程、幾何拓撲、運籌優化、概率統計等應用數學的各分支及方向。
在分析國家社會需求和盤點特色學科的基礎上,中心針對醫療圖像和智能診斷、雷達探測和芯片模擬、信息通信和智能控制、飛行器研究和設計、智慧城市等智能算法的關鍵性應用場景,*建立了5個研究課題組。成員來自各共建高校,包括歐洲科學院院士、長江學者教學名師、杰出青年等各類人才。
前不久,該中心的醫學圖像處理數學團隊和一家*醫院的“超聲診療醫生團隊”,針對病人的就診B超影像資料,開展了一場乳腺腫瘤的良惡性診斷比賽。醫生團隊由老中青專家醫生組成,根據B超影像結合醫學知識和臨床經驗獨立評判;數學團隊由兩名碩士生組成,利用B超影像設計算法,快速地自動給出評判。
根據病理檢查“金標準”的裁決,雙方幾乎打成平手。醫生團隊專家認為,基于數學的圖像處理方法,利用特征提取、大數據分析和快速算法,可以提供客觀、穩定和的分析結果,有助于減輕醫生負擔、提高效率及準確率、緩解醫療資源不均,為分級診療和智慧醫療服務。
“醫學圖像的分析和處理,是醫療和智慧診療的關鍵。”南京大學數學系教授楊孝平說,醫學影像的處理還存在著很多挑戰,如目標邊界模糊和缺失的影像分割問題、深度學習的理論問題等,對于這些問題的解決,數學將起關鍵作用。
楊孝平介紹,中心建成以后,將從小團隊走向大團隊,進行集中攻關和聯合攻關,更加緊密地對接和解決現實問題,實現產學研全鏈條的學科資源整合優化,有望為我國的醫療裝備提供具有自主知識產權的原創技術和支撐做出貢獻。
聽起來十分高大上的有限元高頻仿真算法及軟件課題,探索高效求解高波數聲波和電磁波散射問題,可應用于雷達探測、芯片設計與天線研發等工程領域。比如通過高頻電磁仿真,可更識別目標飛行器或改進雷達設計。杰出青年基金獲得者、南京大學數學系教授武海軍說,高頻波動問題的數值模擬是數學和工程領域的*難題。
有限元高頻仿真軟件,目前國內還是空白,上有一些行業軟件,但往往不適用于求解實際高頻波動問題,這項“卡脖子”工程,有待通過算法研究實現突破。“在這一領域,南京大學數學系在理論研究方面走在全國甚至世界前列,中心成立后將與共建單位在軟件研發、實際應用方面合作發展。”